Tetrahedron Letters No. 27, pp 2343 - 2346, 1976. Pergamon Press. Printed in Great Britain.

CHEMICAL STUDIES ON TUBERACTINOMYCINS. x.¹⁾ TOTAL SYNTHESIS OF TUBERACTINOMYCIN O²)

Tadashi Teshima, Shinya Nomoto, Tateaki Wakamiya, and Tetsuo Shiba[°]

Department of Chemistry, Faculty of Science, Osaka University Toyonaka, Osaka 560, Japan

(Received in Japan 1st May 1976; received in UK for publication 24 May 1976)

Antituberculous peptide, tuberactinomycin 0, had been isolated as one of the four tuberactinomycin congeners³⁾ and its chemical structure was conclusively elucidated by X-ray analysis as depicted in Fig. 1.^{4,5)} A total synthesis of tuberactinomycin 0 seems to be worth-while to be challenged, in view of the unique structure with quite a few unusual amino acids and of an exploitation of structural study employing appropriate analogs.

ÇH₂ C	H2CH-CH-CH2CO-NHC	нсо	CH₂OH -NH CH CO-I	C NHC	H₂OH HCO I
NH2	R' NH2 CI	H2 NH		СО-(Н´	C-NH S NHCONH₂
			R ¹	R ²	
•	Tuberactinomycin	Α	ОН (ЭН	
	-	в	н	Эн	
		Ν	ОН	Н	
		0	.H	н	
	Fig.1 Tube:	racti	inomycin B = V:	iomyc	in

As starting materials, $L-\alpha$, β -diaminopropionic acid was synthesized from L-aspartic acid through Schmidt reaction⁶⁾ and L-capreomycidine was prepared from

the acid hydrolyzate of natural tuberactinomycin N. Throughout the synthetic procedures, difficulties arising from especially labile character of β -ureidodehydroalanine part must be overcome by some device. In a preliminary experiment, β , β -diethoxyalanine,⁷ which was prepared by acetalization of α -formylglycine, could be successfully used for peptide synthesis and converted into β -ureidodehydroalanine residue on the peptide chain at any synthetic step. Necessary fragments for total synthesis were prepared successively as mentioned in Fig. 2. Although DL-form of β , β -diethoxyalanine was used in this synthesis, diastereoisomers of the peptide intermediates have never been separated each other in any synthetic stages. A protected pentapeptide (1) was obtained by fragment condensation using dicyclohexylcarbodiimide -1-hydroxybenztriazole method at the side of carboxyl group of N^{α} -t-butoxycarbonyldiaminopropionic acid avoiding a possible racemization.

Ethyl ester of 1 was replaced with the active 1-succinimidyl ester (2) through saponification followed by reesterification. o-Nitrophenylsulfenyl (NPS) group in 2 was selectively removed under acidic conditions and the resulting pentapeptide ester was cyclized in pyridine at either 60°C or room temperature under high dilution condition to give cyclic peptide (3). [mp 250°C (decomp.), Found: C, 49.84; H, 7.47; N, 16.42 %, M.W. 811 (vapour pressure osmometry), Calcd for C35H62O13N10.H2O: C, 49.52; H, 7.60; N, 16.50 %, M.W., 849] The cyclization yield of about 25 % did not vary significantly depending on the reaction temperature. After removal of all protections except diethyl acetal from (3) by hydrogenolysis and then acidolysis, a solution of the peptide was refluxed in acetone-2M hydrochloric acid (1 : 1) for 10 min, and excess urea was added to afford an unprotected cyclic peptide (4) involving ß-ureidodehydroalanine residue. The product thus obtained was identified with tuberactinamine N.⁸⁾ which was obtained from natural tuberactinomycin N, in all respects (Table 1). [Found: C, 36.76; H, 5.52; N, 24.79; C1, 11.25 %, Calcd for C19H33O8N11C12·1/2 H2O: C, 36.60; H, 5.50; N, 24.71; C1, 11.37 %]. From the fact that the only single product was secured after addition of urea, the configuration of the double bond in β-ureidodehydroalanine part was found to be exclusively forced to Z configuration plausibly being controled by the

Abbreviations; DCC: dicyclohexylcarbodiimide, HOSu: 1-hydroxysuccinimide, HOBt: 1-hydroxybenztriazole, Ζ: benzyloxycarbonyl, Boc: t-butoxycarbonyl, Nps: σ-nitrophenylsulfenyl, Cpd: capreomycidine, Dea: β,β-diethoxyalanine, Uda: β-ureidodehydroalanine, Tua: tuberactinamine, Tum: tuberactinomycin definite conformation, similar to the natural one, of the cyclic peptide moiety To the peptide 4 thus obtained, β -lysine was introduced in the branched part as shown in Fig. 3. The final synthetic product was completely identical with natural tuberactinomycin 0 (Table 1). [Found: C, 38.18; H, 6.05; N, 22.84; Cl, 13.55 %, Calcd for C_{2.5}H_{4.6}O₉N_{1.3}Cl₃·1/2 H₂O: C, 38.10; H, 6.01; N, 23.11;

Cl, 13.50 %]

Table 1. Comparisons of Natural and Synthetic Compo	ounds
---	-------

			Tua N		Tum O		
			synthetic	natural	synthetic	natural	
mp	(deco	omp.)	263-264°	263-264°	240-242°	240-242°	
[α]	(0	0.5, H ₂ O)	$[\alpha]_{365}^{18} - 54.0^{\circ}$	$[\alpha]_{365}^{1.8} - 50.8^{\circ}$	$[\alpha]_{D}^{16}$ -16.0°	$[\alpha]_{D}^{16}$ -16.2°	
		H2O	268(26,600)	268(22,000) ⁸⁾	268(25,500)	268.5(23,800) ³)	
^λ max	nm(ε)	0.1M HC1	268(26,700)	268(22,000) ⁸⁾	268(26,500)	269 (24,900) ³⁾	
		0.1M NaOH	285(17,000)	286(14,000) ⁸⁾	286(17,400)	$288 (13,200)^{3}$	

REFERENCES AND FOOTNOTES

- * To whom correspondence should be addressed.
- 1) Part IX: T. Wakamiya and T. Shiba, Bull. Chem. Soc. Jpn., <u>48</u>, 2502 (1975)
- 2) This study was presented at the 34th Annual Meeting of the Chemical Society of Japan, Kanagawa, April, 1976; p 699.
- R. Izumi, T. Noda, T. Ando, T. Take and A. Nagata, J. Antibiot., <u>25</u>, 201 (1972).
- 4) H. Yoshioka, T. Aoki, H. Goko, K. Nakatsu, T. Noda, H. Sakakibara, T. Take,
 A. Nagata, J. Abe, T. Wakamiya, T. Shiba and T. Kaneko, *Tetrahedron Lett.*, <u>1971</u>, 2043.
- 5) All component amino acids are of L-configuration, and β -ureidodehydroalanine part was assigned to Z-configuration.
- 6) T. Kitagawa, T. Ozasa, and H. Taniyama, Yakugaku Zasshi, <u>89</u>, 285 (1969).
- 7) "The Chemistry of Penicilin", Clarke, Johnson, and Robinson, Editors, Princeton University Press, Princeton, N. J., 1949, p.512.
- 8) T. Wakamiya and T. Shiba, J. Antibiot., 28, 292 (1975).

2346